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We propose a 4-velocity unidimensional discrete Boltzmann model with two dif- 
ferent speeds 2, 1 and two different masses 1, 2. With the three conservation laws 
of mass, momentum, and energy satisfied, we can introduce a nontrivial tem- 
perature. First, we determine the similarity shock waves satisfying physical 
properties: positivity, shock stability, inequalities of the subsonic and supersonic 
flows, increase or decrease of both mass and temperature across the shock. It 
results that either the speed of the shock front is higher than the speed 1 of the 
slow particles and the shocks are compressive or less than 1 and the shocks are 
rarefactive. We observe overshoots of the temperature, across the shock, with 
bumps higher and higher as the shock front speed increases. Second, we study 
the (1 + 1)-dimensional shock waves. They represent the superposition and 
collision of two compressive shocks traveling in opposite directions and we 
observe temperature overshoots for not too large times. 

KEY WORDS: Discrete Boltzmann models; shockwave solutions. 

1. I N T R O D U C T I O N  

For the discrete-velocity Boltzmann models (~) along an axis 0x, the velocity 
V takes only a finite number of discrete values Vi: i =  1 ..... p. To each 
velocity Vi is associated a density N~ satisfying a nonlinear equation, so a 
system of p nonlinear equations for a model with p velocities. In order to 
be physically relevant, these models must satisfy the three linear conserva- 
tion laws of mass rig(x, t), momentum J ( x ,  t), and energy g(x, t). These 
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macroscopic quantities are linear combinations of the microscopic densities 
N i ( x ,  t). So the corresponding linear combination of the nonlinear N i equa- 
tions must reproduce the three linear conservation laws. Consequently, 
a nonlinear unidimensional Boltzmann model must contain at least four 
discrete velocities (p/> 4). 

In fact, the current unidimensional models (2) violate the momentum 
conservation law. In general they are two-velocity discrete models with 
V 1 --~ V 2 ~--0 and only one speed IV1[ = [V2l = 1. For  these models, since the 
mass ~ = Y'. N,. and the energy g = ~'. N ~ V ~ / 2  are proportional,  the tem- 
perature J -e (x ,  t ) =  2 d ~  q/2, q /=or  cannot be distinguished from 
the velocity q/(x, t). For  the temperature this is a general drawback of all 
the discrete models (unidimensional, planar, three-dimensional) with only 
one  s p e e d  1V~l = 1. 

For  the two-velocity discrete models, the known 3 shock wave solu- 
tions are the similarity waves, but no (1 + 1)-dimensional solutions are 
known (except for the completely soluble Rui jgrook-Wu model). For these 
models, the temperature cannot be defined. Here our goal is to introduce 
and study the temperature. 

We propose a 4-velocity unidimensional model with t w o  s p e e d s  and 
two different masses for the particles. Both the H-theorem and the three 
independent conservation laws are satisfied (which allows one to define a 
temperature). For this model, with two couples of opposite velocities, 
Va + V2 = V3 + V4 = 0, Va and V 3 along the positive x axis, we have two 
speeds IVil and two different masses for the particles: IVA = 2, m i =  1 for 
i = 1, 2 and IVil = 1, m~ = 2 for i = 3, 4. The associated microscopic densities 
satisfy a system of nonlinear equations which include, by linear combina- 
tion, the three linear conservation laws for the macroscopic quantities J{, 
J ,  q/, e ,  Ye, 

11 N1  = 14N4 = - 1 2 N 2  = - - [ 3 N 3  = N 2 N 3  - -  N1  N 4  

li = ~t + a i ~ x ,  a a = - a  2 = 2, a 3 = - a  4 = 1 

~ '  = NI + N2 + 2N3 + 2N4 

y = 2(N~ - N2 + N3 - -  N4) 
(1.1) 

= 2N1 + 2N2 + N3 + N4 

Y-# = 2 E / , X Z  - ~ ,2  

J#, + Jx  = 0 ~ + 2gx = 0, g, + .~x = 0, ~ = 4 N 1 - 4 N 2 + N 3 - N 4  

3 See ref. 3 for the two-velocity models; see ref. 4 for a recent review. 
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We notice that a lattice gas model (5) similar to the present discrete 
model (1.1) has been recently studied. A discrete model of the (1.1) type for 
a gas mixture with two different species and two different sets of macro- 
scopic quantities was also previously studied (~ for the possible existence of 
entropy overshoots (7~ in shocks. Here, in (1.1), we study the macroscopic 
quantities of the whole gas, a sum of the two different species; a 
preliminary note was presented. (8) Finally, we notice also that temperature 
overshoots have been observed for two discrete models with temperature: 
8V~ and two speeds, (s) and 9Vi and three speeds, which were previously 
studied as lattice gas models. (9~ 

In Section 2 we study the exponential-type similarity shock waves: 

Ni=noi+n~/D, D =  1 + e  ~", ~l=x-~ t  (1.2) 

Since the pioneering work of Broadwell, (1~ it has been recognized that the 
most interesting physical application of the discrete kinetic theory is the 
study of the shock waves. Here, in addition to the previous 
studies, (1"3'5'I~ we introduce the temperature. The first physical constraint 
for the physical relevance of the shock wave solutions is the positivity of the 
densities. Consequently, we prove that the speed 141 of the shock front can- 
not exceed the value 2 of the speed of the fast particles. For the physically 
acceptable classes of positive solutions we show that distinctions occur 
between f41 less or higher than the speed 1 of the slow particles and 
between 4 > 0 and 4 < 0. If we define the two Maxwellian states Mao, Mas 
by the two sets noi and Soi = noi + n~, we find that the four possible ~ inter- 
vals are limited by the velocities _+ 1, + 2 of the slow and fast particles and 
by the parameters of the two Maxwellian states. The second physical con- 
straint concerns the stability of the upstream and downstream Maxwellian 
states and the determination of the direction of the shock. We introduce 
the characteristic values 4o, 4, for a weak shock, and determine both the 
shock velocities ~ o -  4 and ~ ' s - 4  (% and ~s are the velocities of the 
Maxwellian states) and the sound speeds ~/o-4o and ~ ' s -4 , .  We prove 
that the inequalities for subsonic and supersonic flows are satisfied. The 
result is that for I~l higher than the slow particles of speed 1, only com- 
pressive shock can occur (mass increasing across the shock), while for 
I~l< 1 we find both compressive and rarefactive shocks (mass decreasing 
across the shock). As a third physical requirement we introduce the tem- 
perature and ask that both the mass and the temperature either increase 
together (compressive shock) or decrease together (rarefactive shock). As 
a consequence only the compressive shocks remain for 141 > 1 and rarefac- 
tive shocks for 2/,,f5 <14f < 1. All these results, analytically proved, require 
a lot of tedious calculations, which are provided in Appendix A. Finally, we 
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study the possibility of temperature overshoots in the interior of the shock 
waves. The mass, momentum, etc., are monotonic q functions between the 
two MaxweUian states; on the contrary, the temperature, which is the dif- 
ference between the two monontonic q-functions 2 4 / ~  and ~=, is not 
necessarily monotonic. A simple criterion for such an effect is that the tem- 
perature inside the shock front at t /= 0 is higher than its values at the two 
Maxwellian states. We observe such overshoots and see that they become 
more pronounced when the shock front speed I~I increases. We also 
observe overshoots of the local entropy. (7~ 

In Section 3 and Appendix B we study the (1 + 1)-dimensional shock 
waves which are sums of two similarity shock waves: 

2 

N~=no,+ Y' njjDj, D j = l + d j e V %  l l j = x - { j t  (1.3) 
j = l  

We find that the shock front velocities 4j of the two components are 
opposite and that their speed I~jl is higher than the speed 1 of the slow 
particles. The physical interpretation is that the (1 + 1)-dimensional solu- 
tions represent the superposition and the collision of two compressive 
shocks traveling in opposite directions. We still see temperature overshoots 
for not too large times. Contrary to the similarity shock waves, the shock 
profiles are modified when the time is growing and a relaxation toward a 
third Maxwellian equilibrium state is observed in addition to the two 
Maxwellian shock states. These features are the same for both the mass and 
the temperature. 

2. S I M I L A R I T Y  S H O C K  W A V E S  

In Appendix A we first recall the known result (3) for the possible 
exponential-type similarity waves, leading to similarity solutions 

Ni=no~+njD, D = l + d e  7", q = x - ~ t  (2.1) 

of the nonlinear equations (1.1) satisfied by our 4Vi model. We build up 
the macroscopic quantities associated with the densities (2.1): mass 
Jig = Mo + M/D, momentum J = 3"o + J/D, energy ~ = Eo + E/D, velocity 
q / =  j / ~ ' ,  shock velocity ~ = q / -  4, temperature ~-? = 2 g / ~  - ~ 2, and 
sound velocity ~K. All details are provided in Appendix A and we briefly 
report the main results. 

First, we construct four classes of positive densities. They are charac- 
terized by the speed [4I of the shock front being less or higher than 1 and 
by the sign of ~. We prove that 141 cannot exceed the speed 2 of the fast 
particles. ~ belongs to four intervals with limits given by _+ 1 and __ 2 and 
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by the parameters of the two Maxwellian states Ma o and Mas defined, 
respectively, by noi and So~ = noi + n~. 

Second, we introduce the characteristic ~0, {, values for the weak 
shocks associated with Mao and Ma, and show that both {, ~o and {, ~, 
belong to the above four intervals. However, only three characteristic 
values belong to three of these four intervals. 

Third, we study the velocities Uo, Us, the shock velocities V 0 = Uo - ~, 
V,= U s - 4 ,  and the sound wave velocities Wo= Uo-~o, Ws= U~.-~, 
associated with the Maxwellians. From the signs of both the shock velocity 
and 7 we find when It/I--+ m which Maxwellian is in the upstream or 
downstream domains. For  the classes 1 < 141 <2 ,  with shock front speed 
higher than the speed of the slow particles, we find that only compressive 
shock (mass increasing across the shock) can occur. On the contrary, for 
0 <  F4I < 1 with shock front speed less than the fast particles both com- 
pressive and rarefactive (mass decreasing across the shock) shocks exist. 

Fourth, another distinction between the possible classes of shocks 
arises, depending upon whether the mass M o of the Ma o is higher or less 
than the mass M, = Mo + M of the other Mas. In principle, for this simple 
model we could have 12 subclasses of solutions. Fortunately, invariance 
properties allow us to study only three subclasses. For  the stability of the 
Maxwellian states we verify that the subsonic and supersonic flow 
inequalities are satisfied. 

Fifth we introduce the temperature and require that for compressive or 
rarefactive shocks, both mass and temperature increase or decrease 
together between the two Maxwellian states. We study the possibility of an 
overshoot of the temperature across the shock and we define a criterion for 
this effect. 

Finally, as an illustration we present some numerical calculations. 

2.1. A lgebra ic  Const ruc t ion  of  the  Solut ions 

The ten parameters noi, ni, 7, ~ satisfy six relations, leaving four 
arbitrary parameters 

~, not>0, i = 1 , 2 , 3  (2.2) 

Always one parameter is a scaling one, so that we could, for instance, 
put no1= 1. For the construction of the nonarbitrary parameters it is 
convenient to introduce ~-dependent intermediate parameters ~i=n~/nl, 
5,= ~/nl, 

~2 = ( 2 -  ~)/(2 + {), ~3 = ( 2 -  { ) / ( ~ -  1), n4 = ( ~ - 2 ) / ( {  + 1) 

77= 2{/(2 + { ) ({2_  1) (2.3) 
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while nl depends on the four arbitrary parameters 

n1(2 - 4) ~7 = no4 + no1/~4 - -  n02/~3 --  no3 t~2, no4 = no3no2/nol > 0 (2.4) 

With (2.3)-(2.4) we construct the original n, = ninl, y = ~n 1. Finally, the noz 
satisfy the Maxwellian relation for Mao, while for Ma~ we deduce 
SoaSoj = So2So3 with So, = no~ + n,. 

2.2. Invariance Properties under the Transforms ~ and 

The relations satisfied by the parameters are invariant under the trans- 
forms 

3-]: ~ - r  V - ~ - 7 ,  ni~--~ni+l, no,~--,no,+l , i = l a n d 3  (2.5) 

For instance, we can study the solutions with ~ > 0 and deduce the ~ < 0 
ones. Under this transform we find for the microscopic densities 
N,(x, t)~--,N,+~(-x, t), i =  1 and 3, while for the macroscopic J//, J ,  g, 
Y-e, ~#, which are functions of x, t, we obtain J g ( - x ,  t), - f ( - x ,  t), 
g ( - x ,  t), ~-e(-x ,  t), - J # ( - x ,  t). A second transform J2 interchanges the 
Maxwellians Mao and Ma~, 

J-2: noi--*Soi, n i ~ s i = - - n i ,  7- -* -7 ,  ~--*~ (2.6) 

We obtain ~ - 2 N i  = N i and ~2Mo = Ms = Mo + M. For a solution with 
fixed but Mo X M1 we can obtain the other one with Mo X Mr. 

2.3. Classes of Positive Densities N i > 0  or n o ; > 0 ,  So;>0  

From (2.2), all no, are positive. For  the So, l-see (A.7)] we always 
obtain the same analytic structure 

no,So, = F,(4) [n02 - no1 o~, (4)3 [no3 - no~ J~i(~)] 

so that we check the signs of F,, ~,, flu We find for no2/nol , no3/n m lower 
and upper i-dependent bounds leading to So, > 0 and N, > 0. Positivity is 
violated for 14L > 2, which means that the shock front cannot travel faster 
than the fast particles with speed 2. For positive ~ < 2 we find two classes 
of positive densities (A.8a), 

Class I 1 < r < 2, no2 > / ~ 2 n o l ,  no3 > n3nol (2.7a) 

Class III 0 < ~ < l ,  /~4//~3 < no2/nol < / 7 2  (2.8a) 
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while applying the transform Y-~, we deduce the two other classes: 

Class II - 2 < 4 < - 1 ,  noz</~znol, no3>nolh4/ft2 

Class IV - 1 < ~ < 0, /~2 < no2/noa < n4/n3 

Equivalently we can write the positivity constraints on the front shock 
velocity ~ in terms of the parameters noi, Sot of the two Maxwellians Mao 
and Ma, [see (A.8b)-(A.8c)]. We define a(noi)= 1 +nol/(nol+no3)> 1, 
b(noi) = (no1 - no2)/(nol + no2), and a(soi) > 1, b(soi) with sol instead of noi: 

Class I sup(a(noi), 2b(no~)) < ~ < 2 (2.7b) 

sup(a(soi), 2b(soi)) < ~ < 2 (2.7c) 

Class III no2<nol,  0<b(no~)<4< in f (1 ,  2b(no~)) (2.8b) 

so2 < So~, O<b(soi)<4<inf(1,2b(soi)) (2.8c) 

The two other classes II and IV for ~ < 0 are respectively obtained by 
application of the transform ~ to the classes I and III. We notice that for 
a Maxwellian given (either the set noi or the set Sot), only three intervals for 
4 are possible: one for class I, another for class II, and the third one either 
for class III or IV, depending upon whether no2 X no1, So2 X So2. 

2.4. C h a r a c t e r i s t i c  V e l o c i t i e s  f o r  W e a k  Shocks 

Let us call 4o and is the 4 values for weak shocks associated, respec- 
tively, with Mao and Ma,. We begin with ~o, for which ni(~o)= 0 for all 
i values, and define nl(~, noi): 

24(4 - 2) nl = hl = (1 - 42)(no4 + no1 ri4 - nozn3 - no3n2)(2 + 4) 
(2.9) 

fil = (1 - 42)[no4(2 + 4) - no3(2 - 4)] 

+ ( 4 -  42)[no2(1 + 4) - no~(1 - 4)3 

n1(4o) = 0 are the three roots of a cubic polynomial. What is important and 
proved in Appendix A is that 4 and 4o belong to the same interval, either 
the one of class I defined in (2.7b) or the corresponding one of class II [see 
(A.8b)], and, finally, the one defined in (2.8b) for class III if no2<nol or 
the corresponding one of class IV if no~<no2. We go on with the 
Maxwellian Mas; define gl(~, Soi) 

g1(4) = (2 + 4)(1 - 42)(So4 + so, n4 - So2t~3 -so3n2) = -h~(4)  (2.10) 

and 4s are the three roots $1(4s)= 0 of the cubic ~(4)  polynomial. Here 
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also ~, ~ belong to three similar intervals: (2.7c) and the corresponding 
one for class II and either (2.8c) for class III if So2 < Sol or the correspond- 
ing one for class IV if sol < So2. 

2.5. Velocity,  Shock Velocity,  and Sound Veloci ty  

To the mass Jg = Mo + M/D, momentum j = Jo + J/D, velocity 
~//= J / J g ,  and shock velocity ~ = ~ ' -  ~ we associate (D ~ oo or 1) the 
corresponding quantities for the two Maxwellian states: 

Mao: Mo, Jo, Uo = Jo/Mo, Vo = Uo- 

Mas: M,=Mo+M,  Js=Jo+J, Uo=Ms/Js, V , = U s - ~  

They are linked by the mass conservation law 

M, Vs=MoVo--',VoV,>O and Igo l~ tgs l  if Mo-~Ms (2.11) 

and V0, V~ have the same sign. Depending upon whether y r /~  + oo or 
- o %  the Maxwellian states are either Mao or Mas, so that the y sign gives 
the information for the I~1 ~ oo states. Further, the V0 (or V~) sign gives 
the direction of the shock. With this knowledge we can define the upstream 
and downstream states 

VoMo = 2(no3/no1)(~ + 1 )(noa/74//~3 - -  no2) 4- (2 + ~)(/~2nol - -  no2), M~ = 67 

(2.12) 

First, for class I with ~ > 1 and no2 > n2 > ~q4//73 we find both My > 0 and 
Vo < 0. Depending upon whether M s -  Mo = M <  > 0, we have y <> 0, and 
Mao, Ma~ are the shock limits when ~/-~ -t-oo. We obtain two subclasses: 

ClassIA M > 0 ,  y > 0 ,  - V o > - V s > 0 ;  u p t / = o o M a o ,  
down t /= - o o  Mas 

ClassIB M < 0 ,  y < 0 ,  - V s > - V o > 0 ;  u p q = o o M a ~ ,  
down t; = - oo Mao 

(2.7d) 

and notice that class IB can be obtained from class IA by the transform 
which interchanges the two Maxwellian states. In both subclasses the shock 
is compressive because the mass increases across the shock (mass 
downstream larger than mass upstream). 

Second, for class II with - 2  < ~ < - 1  we have My < 0 and, applying 
the transform #]1, we find Vo > 0, Vs > 0. We still have two subclasses A 
and B corresponding to M<>0, and applying ~ to (2.7d), we verify that 
the shock is still compressive. 
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Third, for class III with 0 < ~ < 1 we still have M~ > 0 with two sub- 
classes M >< 0, but the discussion about the Vo sign is more complicated. Vo 
does not have a well-defined sign in (2.12), and defining r~ 3, we find 

Class III ~3 = [(2-~)no1-(2+~)no2]/2[(l+~)no2-(1-~)nol] 

--* Vo ~ 0 if no3 <> h3nol 

For M fixed with Mo ~ Mr and two possible directions of the shock, 
necessarily one shock is compressive while the other is rarefactive (mass 
decreasing across the shock). In Section A.8 we present the two sub- 
classes IIIA, Vo <> 0, and IIIB, Vo ,~ 0, where we have 

ClasslIIB M < 0 ,  7<0, q=ooMa~,  ~l=-c~Mao, 

M~ < Mo; Vo<0 

if no3>h3nol, up Mao, down Mas, compressive shock; Vo>0 if 
no3 < ~3nol, up Ma~, down Ma o rarefactive shock. 

The four subclasses IV, M ~ 0 ,  VOW0, with rarefactive and com- 
pressive shocks are obtained by applying Jll to the subclasses III. At this 
stage of our study there exists a great difference between the shocks 
propagating with speeds greater or less than the slow particle speed. In the 
first case, only compressive shocks can occur, while in the second case, 
both compressive and rarefactive shocks are possible. 

Among the 12 subclasses, applying the transforms ~ and J2, only 
three of them (one of class I and two of class III) generate all the others. 
For the stability of the solutions in the upstream and downstream domains 
(Lax-Whitham stability theory, (m Gatignol (1 11)) it is sufficient to check 
the inequalities of the subsonic and supersonic flows. 

We define the sound velocity Wo=Uo-~o ,  W~=U~.=U~-~, 
associated to the Maxwellians Mao, Mas and compare with the shock 
velocity Vo = Uo-  ~, Vs = Us-  4. For a supersonic flow we must have 
IV o[> J Wo] or ]Vs[ >[Ws[, while for a subsonic flow [V o[ < [Wo[ or 
IVy[ < [W~]. In Lemmas 1-3 of Appendix A, for the three generating 
subclasses class I1, class IIIB, Vo<>0, we prove that the supersonic and 
subsonic inequalities are satisfied. 

2.6. Energy and Temperature 

For these models with two speeds, mass and energy conservation laws 
are different, so that we can introduce nontrivial energy and temperature 
macroscopic quantities. New physical constraints will occur for our pre- 
vious classes of shock solutions. For a compressive shock we will require 



692 Cornille and Qian 

that both mass and temperature increase across the shock (Their product, 
which is the pressure, will increase, too.) Similarly, we will require that they 
both decrease for a rarefactive shock and the pressure will decrease. We 
shall see that this physical condition cannot be satisfied for the compressive 
shocks of classes III and IV, for which 141 < 1. 

We introduce the energy g = Eo + E/D with 2 E M =  j2 [-mass conser- 
vation law (A.15)] and the temperature Y-e = 2 g / ~ -  ~//2: 

Ye = (A#o + A/'/D)/(Mo + M/D) 2 
(2.13) 

Y o = 2 E o M o - J ~ > O ,  J V = 2 M C ,  C = E o - 4 J o + 4 2 M o / 2 > O  

To the Maxwellians Ma o and Ma, we associate the temperatures Yo and 
~--e s : 

Yeo = Yo/M~,  C-e, = (,A/o + ,4/')/M 2 (2.14) 

s i g n Y e o - Y e , = M [ m + 2 ( 1 - 1 / # ) ] ,  # = M o C / ~ o > O ,  m = M / M o  

and m has the M sign. We require that J/l and J-e increase or decrease 
together across the shock, 

Mo~M,- -*Y-eo~Y-e  s or m + 2 ( 1 - 1 / # ) ~ 0  if M<>0 

In Appendix A we check this property for the solutions of class III for 
which 0 < 4 < 1. In Lemma 4 it is shown that this property is not possible 
for compressive shock. In Lemma 5 the same result holds for the rarefactive 
shocks if 4 < 2/x/-5 = 0.89. An application of the transform ~ will give the 
same results for class IV. Consequently, in the following, we only consider 
compressive shock solutions of classes I and II with 1 < 141 < 2 and rarefac- 
tire shocks of classes III and IV with 2/x/5 < 141 < 1. 

2.7. Overshoot  of  the  T e m p e r a t u r e  

Let us neglect the velocity J//in the temperature .Y--e-~ 2g/,//g. Then it 
is shown in Appendix A that 3-b becomes a monotonic ~/-dependent func- 
tion like the mass ~ ( t / )  and the energy g(t/). Adding _ ~ 2 ,  we find that 
the whole temperature is not necessarily monotonic across the shock. We 
look at the possibility of an overshoot of 3-e. A simple criterion for such an 
effect is 

~-e(tl = O) = ( JV" + ~o/2 )/( Mo + m / 2 )  2 > sup {~-?o, J~,} 
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Still assuming that mass and temperature increase or decrease together 
between the two Maxwellian states, we find that the criterion becomes 

Class A M > 0 :  .Yeo<~-'es<J-e(0 ) 

Class B M < 0 :  r  

sign Je(O) - .r o = M( - m / 4  - 1 + 1/#) 

sign Ye(0) - J-e, = M[3m/4 + 1 + (m2/2 -- 1)/#] 

For instance, for class B we obtain the two conditions, with # defined in 
(2.13)-(2.14), 

ClassB M < 0 :  2 < ( - M / M o ) # / ( # - l ) < 4  , # > 1  

which depend on ~ and on the macroscopic quantities Mo, Jo, Eo of Mao. 
Recalling M = M s - Ma, we see that the condition for the effect depends on 
the Maxwellian states and on the shock front speed. A similar condition for 
class A is written down in (A.25). 

2.8. Entropies (Appendix  A.9)  

The shock functional ~ f l ( t / )=Z  ( - ~ + a i )  Ni logNi ,  a l =  - a 2 = 2 ,  
a 3 = - a 4 =  1, is decreasing continuously between the two states I~1 = 
-o % + oo. On the contrary, the local entropy - ~ ( ~ / )  = - ~  Nilog Ne is 
not necessarily monotonic and can have overshoot or dip across the shock. 

2.9. Numerical  Calculat ions (Fig. 1) 

We present, for two rtOl values, the shock profiles both for compressive 
shocks with [r > 1 and for one rarefactive shock with ~ < 1 (Fig. ld). We 
quote ~ ,  Je ,  and - W ,  as functions of t / '=  Y/nol , normalized to their 
highest value (Mo, T e o , - H  o) either at the downstream state for com- 
pressive shocks or at the upstream state for the rarefactive shock. The 
supersonic and subsonic inequalities are satisfied and the values as It/I ~ 
of the pressure MoTeo, Ms Tes increase for compressive shocks and 
decrease for the rarefactive one. We require an increase of the local entropy 
between the two limits, or - H u p  < -//down. In Fig. 1 the quoted numbers 
are for nm = 1, but for Mao we have Mo/nol , 40, Vo, Wo, which are no1 
independent, while Ho is no1 dependent (the same for Ma,). Consequently, 
JCZ(rf)/Mo, Je(tf)/Teo are no1 independent, but :r is not. 

For  the compressive shocks we observe that the temperature over- 
shoot increases with 141 and we present the bumps for ~ = 1.97, 1.7, 1.5. On 
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(a) Class IB M<0 {=1.97 "~=-0.3L, 
noI=I no2=0.017 no3=0.03 
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M s = 0.03 
~, = 1.Z,8 
V s =-3.26 
W s =-238 
Tes= 0.28 
-Hs= 0.09 

I 
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/ 
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I /  ! .... \v, w, 

I-/ . . . .  \ .  
~(~I~Mo ~.--__ 

\ ~ ,  nO] . . . .  
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( b )  Class IB H<0 

Downstream Ma o 
Mo=2 ~o:1.93 
Vo:-0.Z, Wo=-0.63 
Te:=0.9 -Ho=0.68 2 

Wo Vo ,~/  

\ \  

-10 

~=17 '6=- 0./~8 
n01:1 no2:0.08 no3:0.45 

Upstream Ma s 
H~=0.34 ~s=I 
V~=-2.4 W,=-1.7 

/ / / ~  Tes=0.46 -Hs=0.37 

\ %-:-~..:. =.. _~ (rlgi? . . . .  
I 
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(C) ' Class I B M<O ~=I .5 noi=I %2=I 53 n03=I ~=-0.68 

l 
-10 

Downstream Ha 0 

Mo=3J,6 ~o=1.81 "\j~(~)/H o 
-Wo=0.83 > -Vo=0.52 \ . , / /  

Wo VO " ~ ' ~ n ~  / I. VS 
�9 T%= 1.04 ~ 

H o =-0.57 ~ -  
H s =-0.415 

~ )/H0 (fi)/Te 0 

E 
-5 0 5 10 

,• Upstream Ha s 

/ "  '2"" Ms: 0.71 ~.s =1.03 
�9 -%=-2.51 > -ws=O.05 

W$ 

q' 

(d) Class TIT B M<O ~ =0.99 %1=1 %2=5.10 -] %3=1.95 "f=-0.6/, 

Upstream M% Downstream Ma s 

- wM:= ~,=0.977 
vMO=~.922> w~O=0.99 5 1.8 ~ ~03717> 
o= . o=0.196 / ~ = v5=0.9593 

V s W s 
Wo vo / ~ 1 = = 

/ ~ Te,=0.182 Hs=-O.05 
Te~ ~ 1- 

-~-.-~ ~ _ 

\ % \ j  ~( r l ) /Te0 

~(~)/Ho \ ~'~ "~/('(I~) / M o %,=~o. 

-110 20 I = -  q '  

\ ~- 

Fig. 1. Similarity shock wave functions of ~/' = ~/nol. Here Mo/nol , M,/nol , 4o, 4,, Vo, Vs, 
Wo, W,, Teo, Te,, ~(tl ')/Mo, and J'e(t()/Teo are %1 independent, while Ho, ~Is, ~f(rf)/Ho 
are not dependent�9 The quoted %2, %3, Mo, H0, Ms, and H,  values are for not = 1. (a-c) 
Compressive shocks for ~ = (a) 1.97, (b) 1.7, (c) 1.5; and no~ = 1 and 0.1. Overshoots of ~u 
always exist, while overshoots of J4~(q ') present for %1 = 1 disappear for smaller values, for 
instance, %1 =0.1. For  %1 =0.1 and 4 =  1.97, 1.7, and 1.5 the H o values are, respectively, 
-0 .26 ,  -0 .43 ,  and - 0 . 5 9  and the H s values -0 .014 ,  --0.077, and 0.125�9 (d) Rarefractive 
shock, ~ = 0.99. A temperature overshoot exist, while for the local entropy a dip present at 
%1 = 1 disappears for large %1 values, for instance, %1 = 50, for whic H o = 641, H~ = 200. 
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the contrary, for - ~  the overshoot present for no1 = 1 has disappeared for 
no1=0.1. For the rarefactive shocks of class III-IV with Ir < 1 we have 
numerically found that the joint decrease, between the Maxwellian states, 
of ~ and J-e begins for 141 ~-0.99, showing that our theoretical evalua- 
tion result 141 > 2/ , f-5 is good enough. The temperature overshoot is less 
important than in the previous pictures with 141 > 1, and in the example of 
Fig. ld, ~ = 0.99, while for - ~  the dip present for n01 = 1 has disappeared 
for n01 = 80. 

In conclusion, for the compressive shocks, which are the standard 
physical shocks, the overshoot of the temperature effect becomes more and 
more important when the shock travels with its highest possible physical 
value. 

3. (1 +1 ) -DIMENSIONAL SHOCK WAVES 

The exact (1 + 1)-dimensional solutions are the sums of two similarity 
w a v e s  (~12) 

2 

Ni=  no,+ Z nji/D:, Dj= 1 +die 7j"j, t l j = x - r  (3.1) 
1 

If the two components are complex conjugate, the solutions are 
periodic (3'4'12'13) and such solutions exist for the present model/s) Here we 
are interested in the temperature properties of shock waves and the two 
components are real. The two components j =  1 and 2 must satisfy the 
similarity relations studied in Section 1. In addition, the sum must also be 
a solution and this gives another constraint [vanishing of the coefficient of 
(D1D2) 1 in the collision terms]: 

r/12n23 q- n13n22 = n l l n 2 4  + n14nzl (3.2) 

For the similarity solutions of Section 2 we have, in fact, only one variable 
q = x - 4t with two Maxwellian states when Ir/I --* oc. On the contrary, for 
the (1 + 1)-dimensional solutions we really have two independent variables 
x and t, so that in addition to the two Maxwellian shock limits tx I ~ o% 
the equilibrium Maxwellian state exists when t--* oe. The associated 
physics is different. At initial time, or small time, we only observe the shock 
profile with two shock limits, but when the time is sufficiently large, the 
Maxwellian equilibrium state appears, which spreads out. The two 
similarity components j =  1,2 of (3.1) will be chosen as corresponding, 
respectively, to the two compressive shock classes I and II. The (1 + 1)- 
dimensional sum solution will represent the superposition or collision of 
two shock waves traveling in opposite direction with a relaxation toward 
equilibrium. All details are given in Appendix B. 
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3.1. Algebraic Construct ion of the Solut ions 

The 16 parameters noi, ni, Yi, ~i  satisfy the 11 similarity relations of 
the two components j =  2, 2 plus another relation written down in (3.2). 
As in Section 2, we introduce ~j-dependent intermediate parameters 
nsi = nj jnj t ,  ~j = 7jnji, deduce nil 

tTj2 = (2 - ~j)/(2 + ~j), ~i3 = ( 2  - -  ~j)/(~j - -  1 ), /~j4 = ({j -- 2)/({j + 1 ) 

(2 + ~.j)(~.2 -- 1) ~ = 2~j, ni1(2--{ j )  yi=no4+nol~s4--no2~j3--no3~j2 

(3.3) 

and reconstruct the other parameters nj,=~sgni1 , 7j=~snjl  from the five 
parameters 7j, no~, i =  1, 2, 3. However, we only have four arbitrary 
parameters, chosen to be 

~1, noe>0, i = 1 , 2 , 3  (3.4) 

but (3.2) written with the intermediate parameters ~12~23+t~13~22 = 
/~14-'~/~24 allows one to obtain ~2 from ~1. We obtain two classes of 
solutions [see (B.5)] and choose the simplest one, 

~1 + ~2 = 0 

Let us choose for the j =  1 component the classI of Section2 with 
1 < ~  < 2  and a negative shock velocity; then the j = 2  component is of 
class II, - 2  < ~2 < --1 with a positive shock velocity. 

All Section 2 results concerning stability, sound wave velocity, and 
subsonic and supersonic inequalities are valid for the two components. 

3.2. Positive (1 + 1 ) -Dimensional  Solut ions 

If at initial time or at finite time, the asymptotic limits Ixl ~ ~ are 
positive, then we can find ~12) constraints on the dj so that positivity holds 
for all x, t values. However, depending upon whether ~172 >< 0, we find two 
sets of limits which must be positive: 

7172<O--*Xo=noi+nj i>O,  i = 1,..., 4, j = l ,  2 

~)1 ~)2 > 0 "+ F/0i > 0 ,  ~'2i=nOi'~-llli~'-H2i>O 
(3.6) 

We must find, in each case, subdomains of the arbitrary parameter 
space for which the two conditions on 7172 and on the shock limits are 
satisfied. In Appendix B we determine two classes of positive densities 
corresponding to the two cases 7172X0 (Theorems ! and 2). Here, for 
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simplicity, we briefly report the result for the case 7 1 7 2 < 0 , s  As 
mentioned above, we choose 1 < ~a < 2, 42 = --~1 and, applying the results 
of Section 2, the S~j are positive if no~, r and - { 1  satisfy the constraints 
written down in (A.8a): 

if n12 = (2 - ~1)/(2 + 41) "< no2/nol < 1//712 
(3.7) 

and if /7o3//7Ol >/~13 = (2 - ~1)/(1 - ~1) "+ v,/j > 0 

In Lemma 7 of Appendix B we find two possible conditions for 3)13) 2 <0 .  
Let us define 

X=(noz--nm~12)/(nol--no2~12), Z = 3 + 4 ( 1 - ~ 2 ) n o l ( 4 - ~  2) 

Then ~)1~12 < 0  in the two cases 

(i) l<no2/nol<l/~12, Z < - X  or - 1 / X < Z < O  (3.8a) 

(ii) n l z < n o z / n m < l ,  Z < - I / X  or - X < Z < 0  (3.8b) 

If the arbitrary parameters satisfy either (3.7), (3.8a) or (3.7), (3.8b), then 
3)172 < 0, ~62> 0, and the densities Ni are positive. 

3.3. M a c r o s c o p i c  Quant i t ies  

For  the j t h  similarity components we define the mass J~.= 
m o + mj/Dj, momentum ~ = Jo + jJDj,  energy 4 = eo + gJDj, temperature 
~ j = 2 g j J g j - ( ~ / ~ j )  2, and the associated limits when r / j - + - o o  or 
Dj--+ l: Mj= rno + m J, Jj= Jo + Jj, E j =  eo + ej, Tej= 2EJMj-- (JJMj) 2. For  
the (1 + 1)-dimensional solutions we define the mass ~[=mo+Y~mJDj ,  
momentum J = Jo + Z j /Dj ,  energy g = eo + ~ ~j/Dj, and temperature 
Ye = 2 g / J / -  ( j / ~ / ) 2 .  For  the ~1 + ~2 = 0, 7172 < 0 classes of solutions, the 
two limits when Ixl --+ ~ are just the previous Mj and Tej. 

3.4. Numer ica l  Calculat ions 

In Fig. 2a, for ~1 = 1.9, nox = 1, no2 = 23.4, no3 = 9.1, we present the two 
similarity shock wave components with a variable r/which is either x - ~ 1 t 

for the first component, x - ~ 2 t = x  + ~1 t for the second one, or x at t = 0 
for both. We normalize mass and temperature by their ratios to the highest 
values M1 = mo + m1 and Tel. We see that the two shocks are compressive, 
traveling in opposite direction (arrays), and we observe an overshoot of the 
temperature for the first component. Figure2b represents the ( l + l ) -  
dimensional collision or superposition of the two previous shock waves. 
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We still normalize mass and temperature by the highest asymptotic values 
M1, Tel. We observe a bump for the temperature at initial time or at small 
time values. Due to 7172<0, ~1~2 = - ~ < 0  and the present choice 
7j~j>0,  the two exponentials ( e x p - 7 / / / )  decrease when t increases, 
Dj --* 1, and the equilibrium Maxwellian becomes m o + ml + m2 = Mo for 

(a) Similarity waves of the 
(1.1) - dimensional shock wave 
{1= 1.9 no2 = 23./+ %3=9.1 
~2= -1.9 

-0.2 

.J 
- -  '~%. 

JLdql/M~ 

J~z(q)/H1 
I 

"g'e ~ (ql/Te 1 

ft ~ e 2 ( q ) / T e l  

t\ 

,.----k:_~__.__..__~ n 
0.1 0.25 

(b) (1+1) - dimensional shock wave 

F~ = 1.9 %2 = 23.& %3 = 9.1 

"~1 = 21.102 
HI = 71.102 
Te I = 0.52 

/ 
/ 

L m  

2111~ ~2 = -1.9 
Ill %z= -27 
Ill Hz = 555 

4H- -%--(x'!=O'--Sl--/r-e\ r%-- 0.3 

~ A(x't=~ ! 

�9 . . . . .  It 

"~e (x,t=0)/Te 1 t _  

li. x l ,  t-01/M, l i i i x 
-1 0 1 2 

Fig. 2. Results for (1 + 1)-dimensional shock waves. (a) The two similarity components with 
= • 1.9 correspond to compressive shocks and we see a temperature overshoot for one com- 

ponent. (b) Collision or superposition of the two components. The temperature overshoot 
present at t = 0 decreases and spreads out when t is growing. The Maxwellian equilibrium 
state appears and we see the moving of the shock. 

822/61/3-4-13 



700 Corn i l le  and Qian 

the mass and 2(e o+~2 e i ) / M o - -  (Jo+Y~J~)2 /M~ for the temperature. 
Contrary to the similarity shock waves, the (1 + 1)-dimensional profiles 
change with the time. The bump decreases and for sufficiently large time 
the Maxwellian equilibrium state appears and spreads out. We also observe 
the moving of the shock. 

APPENDIX A. EXPONENTIAL-TYPE SIMILARITY SHOCK 
WAVES 

We seek exponential-type similarity waves with the variable q = x -  ~t 
bounded on the ~/axis and recall a previous proof (4'~4). From the linear 
equations(1.1) we see that all 0,Ne are proportional. We can write 
Ne = noi + ni/D(rl) and get a Ricatti equation: 

aD , + ao + a l D + a2 D 2 = 0  

ao =//2//3 - / /1 / /4  

a l  --//02/73 -1- no3n2 -/701//4 -/704//1 

a2 =//02/703 -/'/01//04 

a = n l ( 2 - ~ ) =  -n4(1 + ~) - -n2(2+  ~ ) = n 3 ( r  1) 

(i) If a2=0 ,  the solution is a constant plus an exponential 
D = - a o / a  1 + d e x p ( - a l r l / a ) ;  (ii) if a 2 r 0, putting D = (a/a2) 0,  log E, 
then E is a sum of two exponentials, exp(2eq). If 2~r  we find 
D -1 = cl + c2/[1 + exp(21 - 2 2 )  q- l ,  If 21 = 22 = - a x / 2 a ,  the two independ- 
ent solutions are exp 2r/, r /exp 2~/, leading to power-type solutions for D, 
which are excluded. 

We determine the similarity solutions 

N i = no~ + n J D ,  D = 1 + de ~", r/= x - ~t, d = 1 (A. 1 ) 

of the nonlinear system (1.1) with l~ = 0t + ai ~x and study the properties of 
the macroscopic quantities: mass J//, momentum J ,  velocity ~ = J / Jk ' ,  
shock velocity ~ U = q / - ~ ,  sound w a v e s  :#F=q/--ffM~, temperature 
Y-e=2&/J/l--q/2, local entropy ~ = Y ~ N i l o g N ~ ,  and shock entropy 
Jet]~ = ~ ( - ~ + a~) N~ log N~. 

A.1. Algebraic Determination 

The 10 parameters no;, n2, y, r satisfy six independent relations, 

7n1(2-  ~) = -7n4(1 + ~) = n2~(2 + ~) = n37(~ - 1) = n2n 3 - n ln4  

//01/74 -It-//04//1 --//02//3 --//03//2 (A.2) 
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and the relat ion for the Maxwell ians  Mao, Mas  defined by the no~ and 
Sol ~ no i  ~- H i 

no2no3 -- nolno4, SozSo3=SolS04 (A.3) 

We choose for the four a rb i t ra ry  paramete rs  

4, no />0 ,  i = 1 , 2 , 3 ~ n o 4 > 0  (A.4) 

We introduce intermediate  4-dependent  pa ramete rs  deduced f rom (A.2), 

i~ 2 = n 2 / n  1 ---- (2 - 4)/(2 + 4) 

n3 =n3/n l  = ( 2 -  4)/(4 - 1) 

n4 = n4/na = (4 - 2)/(4 + 1) 

= 7/nl = 24/(2 + 4)(4 z - 1 ) (a .5)  

obta in  n~ as a function of the four a rb i t ra ry  parameters ,  

n1(2 - ( )  ~ = noin4 + no4 - no2/i3 - -  no3/~2 (A.6) 

and reconstruct  the original pa ramete rs  n~ = ~inl ,  7 = ~n~. 

A.2. Invariance Properties with the Transforms 4 ,  

(i) 3-]1:4 ~ - 4 ,  ? ~ - 7 ,  ni--+ni+l, n o i ~ n o i + i ,  i = 1  and 3. The  
relations (A.2), (A.3) are invar iant  by ~ and consequently we can study the 

> 0 solutions and deduce the 4 < 0 ones. We note  

~-~Ni(x, t ) = N i + l ( - x ,  t), i =  1, 3 

~ ( x ,  t)= ~ ( - x ,  t) 

~ J ( x ,  t)= - J ( - x ,  t) 

~ g  = g ( - x ,  t) 

~]l J-e ( x,  t ) =  ~-e ( - x , t) 

(ii) Yz:noi--*Soi,  n z ~ s i = - n i ,  7 ~ - 7 ,  4 ~ 4 .  Then ~ 2 N i =  
noi + n ~ -  ni/(1 + e -~") = N~, ~ '  = d4", and the densities are invariant.  We 
define for the Maxwell ians 

Mo = no1 + no2 + 2(no3 + n o 4 )  

Ms = Sol + So2 + 2(So3 + So4) 

M = n l + n 2  +2(n3  +n4)  
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and get J z M o  = Ms = Mo + M. For  the solutions J g  = M o  + M I D  with 
M > 0 ,  applying ~ ,  we deduce those with M < 0 ,  interchanging the 
Maxwellians. 

A.3. Study of N i > 0  or n o i > S o ; > 0  

We have f rom (A.4) n o i > 0  and for S o i = n o i + n ~ i  we apply  (A.5), 
(A.6), 

sol = A(no2/nm - t~2)(no3 - ft3nol) 

So2 = ft z A ( no2/no l - nz)(no3 - no1 n4/ti2) 
(A.7) 

So3 = n3 A (no2/no~ -/~4//~3 )(no3 -- n3 nol ) 

A = (r _ 1)/2r 

and recall that  So4=So3So2/Sol. For  ] r  we get r i2<0,  r i3<0,  A < 0 ,  
sol < 0, whence only 1~1 < 2 can lead to N i >  0. Starting with 1 < ~ < 2 and 
0 < r < 1 we respectively find ~2 > 0, ~3 > 0, A > 0, /~4 < 0 and ~z > 0, ri3 < 0, 
A < 0, ti4 < 0. For  the Ni > 0 we get two classes of ~ > 0 solutions and with 

deduce the ~ < 0 ones: 

Class I 1 < ~ < 2, noz/nol > Fl2, no3/n m > rl 3 

Class I I  - 2 < ~ <  - 1 ,  n o z / n m < r l 2 ,  F/O3/F/01 > n4//72 
(A.Sa) 

Class I I I  0 < ~ < 1, n4/n3 < no2/nol < fl2 < 1 

Class IV - 1 < ~ < 0, 1 < n2 < no2/no~ < n4/rt3 

For  instance, applying ~ to class I, we find 

1 <  - r  

nol/no2 > (2 q- 4)/(2 -- ~) = 1//12 

no4/no2 = no3/nol > --(2 + ~)/(~ + 1 ) = ri4/ff2 

which defines class II. Fo r  a given M a o  we can rewrite the ~ intervals 
(A.8a) leading to N~>0 .  Either no2/no~ > 1 or < 1, which excludes either 
class I I I  or  IV, and only three different ~ intervals can exist. We define a, b 
and find 

a(noi) = (no3 + 2nol )/(no3 + no1 ) > 1 

b(noi) = (no1 - no2)/(nm + no2) 

Class I sup(a(noi) ,  2b(noi)) ~< ~ < 2 

Class I I  - 2  < ~ ~< in f ( - a ,  2b) 

Class I I I  nol>~no2, 0 < b ~< r ~<inf(1, 2b) 

Class IV no2/> no1, s u p ( -  1, 2b) ~< ~ ~< b < 0 

(A.8b) 



4-Velocity Unidimensional Discrete Boltzmann Model 703 

For a given Ma~, applying ~2 to (A.8b), we obtain, for the same 4, similar 
intervals with So, instead of no,: 

Class I 

Class II 

From n~ we define a 
dependent coefficients, 

sup{a(So,), 2b(so,) } ~< r < 2 

- 2  < r ~< in f ( - a ,  2b)... 
(A.8c) 

cubic polynomial hl(~,nol ..... no4 ) with no,- 

hl(~, F/0i ) = n 12~(~ -- 2) = (2 + ~)(~ 2 _ 1 )(no4 + no1/~4 - -  no2n3 -- no3n2) 

r~1(r --* --r noi) = --hl(~, no, ~ noi+ 1), i = 1 and 3 (A.9) 

and determine for the ~ limits of the intervals df (A.8b) the corresponding 
n1(r signs, 

1i1(-2) = -12no3 < 0 --* ~1(2) > 0 

hi( l )  = -6no2 < 0 --, h i ( -  1) > 0 

hl(a(no,)) = 2nolno3a/(no3 + no1) > 0 ~ hl(- -a)  < 0 

hl(2b)= 16nolno2b/(nol +no2)~0  if no1 ~no2 

h l ( - 2 b )  ~.0 if nolO. no2 

hl(b ) = -4no3no2b/(nol + no2 ) ~ 0 

if n o l . ~ n o 2 ~ l ( - b ) : ~ O  if n O l X r t o 2  (A.Sd) 

Similarly, for the So, parameters let us define a r cubic polynomial 
with Soi=no,+na~i coefficients and which satisfies an important relation 
with ht, 

S1(r Sol)= (2+ ~)(~2_ 1)(So4+Sol~4_So2~3- So3ri2)= -hl (~ ,  no,) (A.10) 

However, applying the ~ transform to (A.8d), we find the same signs for 
the ~ limits of the (A.8c) intervals, 

sl(~ = - 2 )  = -12So3 < 0 

d~(2) >0,  g~(1) <0,  ~ , ( - 1 ) > 0 ,  g~(a(so~))>O (A.8e) 

g l ( - a ) < 0 ,  ~ ( b ) X 0  if So~So2,... 

A.4.  W e a k  Shocks Assoc ia ted  to  M a o  and M a  s 

Let us define ~o, the characteristic velocities associated to Mao, corre- 
sponding to n ,=  0 or hl(~O)= 0. From (A.9) three ~o roots exist. From the 
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til(4) signs given by (A.Sd) it follows that one {o root is in the (A.8b) inter- 
val defined for class I for 4, another in the interval defined by class II 
for 4, while the last 4o root is either in the 4 class III or the ~ class IV, 
depending upon whether no1 <> no2. 

Another way to find the characteristic values {o, {~ is to apply the 
Lax-Whitham theory m) (see Gratignol (~'~) for the 6Vi model). We 
linearize (1.1) around M~ with no~(1 + Zi (x, t)) and keep terms linear in Z~: 

n m  l l  Z l  = no414Z4 = - n o 2 1 2 Z 2  = -no313Z3 = n o z n o 3 ( Z 2  + Z 3  - Z l  - Z4)  

We obtain A Z  = 0 with A a matrix differential operator and Z a column 
vector with elements Z1,..., Z4. The determinant of A is the sum of a 
fourth-order differential operator 2 (~,~_ 2 2 4ax2)(0,2-a~2) plus a third-order 
one 

c~2 2 ( ,2 - 4ax2) [no,(a , + ax) + no2(a , - Ox)] 
2 2 + (0,2 - 0x2)[no3(O , + 2~?~) + noa(a, - 2~?x)] 

Applying these operators to a (x -4 t ) -dependen t  function, we find the 
roots ~ = ___ 1, _+ 2 for the fourth-order operator and the cubic ~ polynomial 
r~, [see (A.9)] for the third-order one. The three ril = 0 roots belong to the 
three intervals ( - 2 ,  - 1 ) ,  ( -  1, 1 ), (1, 2) with end points given by the roots 
of the fourth-order operator. 

For  the characteristic value ~s of the other Maxwellian Ma s with 
~1(4i)=0 we deduce from (A.8c), (A.8e), and (A.10) that one root is in 
class III or IV, depending upon whether sm <> So2. 

A.5. Velocity and Shock Velocity 

For the mass Jr = M o + M/D,  momentum J = Jo + J/D, velocity 
q / =  J / J g ,  and shock velocity ~U = q / -  4 we associate for Mao 

Mo = (noa + no2)(1 + 2no3/nol) > 0 

Jo = 2(noa - no2)( 1 + no3/n m ) 

U o = Jo/Mo 

m o  Vo = Jo - Mo 4 

= 2[nm(1 - ~) - no2(1 + ~)](no3/nol - n3) 

2n3[nm(1-  4 ) -no2(  1 + 4)] = (2 + 4) no i -  ( 2 -  4) no1 

~']~ Vo = -Vo ,  J]~ ~3 = t~3 (A.11) 
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For class I with no2 >/~2 we find Vo < 0, while for class III we distinguish 
between no3 >< no, t73. For the other classes we apply ~ :  

ClassI Vo<0,  ClasslI  V o>0 ,  ClasslII  V o ~ 0  

if no3 ~ n3nol and the converse for Class IV 

For  MG we associate M ~ = M o + M > 0 ,  J , = J o + J ,  
V, = U~-  ~ linked to Mao with the mass conservation law 

M s V , = M o V o  or J = ~ M ~  Vo V~> 0 

(A.8f) 

Us = MJJ~, 

(A.12) 

so that V~ has the Vo sign provided by (A.8f). 
From D = 1 + e ~', the determination when [q[ ~ oe of the upstream 

and downstream needs knowledge of the 7 sign, 

~M/6 = ~ = / ~ 1 / ( 4  2 - 4)(4 2 - 1) 

4(2 - 4) M/6 = (no3/nol)(no2 - n2nOl) q- n4n3no2 
(A.13) 

Due to M47 > 0 we get, for 4 fixed, two possibilities M ~> 0 called A for 
M > 0 and B for M < 0. From the two possible r classes, the two Vo signs 
for classes III and IV and the M <  > 0 signs we should have 12 subclasses. 
However, J1, ~ with, respectively, 4'--' - 4  and Mo--,'Ms or M > 0 ~  
M < 0 allow us to study only three subclasses. 

ClassIA: 1 < 4 < 2 ,  M > 0 y > 0 ,  Vo<0,  up ~l=ovMao, down 
rl = -oe  Mas, Mo < Ms compressive shock. 

Class IIIA: 0 < 4 < 1 ,  M > 0 ,  7 > 0 ,  rl=ooMao, q= -ooMas;  Vo<0 
if no3>~3nol, up Mao, down MG, compressive shock; Vo>0 if 
no3 < g3nm, up Mas, down Mao, rarefactive shock. 

Classes I and III: 

M > 0  if no3/no~>(~3no2+~4nm)/(no2-~2nm) (A.Sg) 

A.6.  Sound  V e l o c i t y  

For Mao, Mas we define the sound velocities Wo = U o - ~ o  = 
Vo + 4 - 4o, W, = Us - 4s and, comparing with Vo, Vs, we verify that the 
supersonic and subsonic flow inequalities are satisfied. 

L e m m a  1. Class IA: up I Wo[ < I Wol, down I Wsl < I W, I, 4o < ~ < G. 
We recall: 1 < 4 < 2 ,  M > 0 - - * f i l ( 4 ) < 0  from (A.13)~s  from 

(A.10), ~1(2)<0,  r~l(1)>0 , s 2~o1(1))0 from (A.8d) (A.8c). 
Further, 4, 4o and 4, 4~ belong to the same intervals (A.8c) with only one 
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~/1(~o)=0=So1(4~) root. Consequently,  ~o<  ~ < 4, and from V~<0,  
W~ = V, + ~ -  ~s < V~ < 0 we get the subsonic inequality [W~I > I Vs[. If 
no1 > no2, then 2b(no~) < 0 < 4o and if no1 < no2, r/l(2b(no~) = 4) > 0 f rom 
(A.8a) and still 2 b < ~  or no2>t /2 (~=~o) .  We use this result in 

WoMo = Jo - ~oMo 

J o -  ~oMo = nm(2 - ~o) - no2(2 + 40) + 2(no3/no1)[nol( 1 - ~o) - no2(1 + 40)] 

(A.14) 

We get W o < 0  and f rom V o < 0 ,  W o - V o = ~ - ~ o > 0  the supersonic 
inequality [ Wo[ < [ Vo[. 

L e m m a  2. Class I I IB  and V o > 0 :  up V o > W o > 0 ,  down W s >  
Vs>0, ~<~<4o. 

We recall M <  0 ~ nl(~) < 0 (A.13) ~ go1(4) > O no1 > no2 (A.8b) 
b ( n o g ) > O ~ i l ( b ) > O  ~i1(1)>0, A I ( 1 ) > 0  (A.8d), (A.8e), ~, ~o and ~, ~, 
belong to the same intervals with one ~o and ~s root. Consequently,  
4 s < 4 < 4 o  and W ~ = V s + ~ - 4 ~ > V s > 0  is the subsonic inequality. 
Further ,  f rom (A.Sd), ~l(b(no~) < 0, no2 < no1 ~ b(nog) > ~o, or 
n o 2 < n o l ( 1 - ~ o ) / ( l + ~ o ) .  Substi tuting into (A.14), we get W o > 0 ,  
Vo = ~o - ~ + Wo > Wo or the supersonic inequality. 

L e m m a  3. Class I I IB  and V o < 0 :  up - W  o > - V  o, down 
-Vs> -Ws. 

F r o m  M < 0  and L e m m a  2 we still have 4 1 < ~ < ~ o  and deduce 
- Wo = - Vo + ~ - ~o > - Vo for the subsonic inequality. F r o m  r~(~) < 0 
and (A.9) we find n l ( ( ) >  0 and 

S 0 2  - -  5 ' 0 1  - -  no2 + no1 = nl(n2 - 1) = - 2 4 n l  noi/(2 + e) < 0 

Consequently,  So2 <Soa,  g l ( b ( s o i ) ) < 0  from (A.8e) or  b(soi ) > 4, or 
So2 <sin(1  - ~1)/(1 + ~,). We write down an expression similar to (A.14) for 
W~M s and substitute the inequality 

W s M , = s o l ( 2 - ~ l ) - S o 2 ( 2 + 4 s ) + 2 ( S o 3 / S o l ) [ s o l ( 1 - 4 s ) - S o z ( l + 4 s ) ] < O  

Finally, - V, = - Ws + 4 - 4s > - IV,, which is the supersonic inequality. 

A.7.  Energy and T e m p e r a t u r e  

We introduce the energy ~ = 2 ( N ~  + N 2 ) + N 3 + N  4 and apply  the 
m o m e n t u m  conservat ion Jt  + 2gx = 0, 
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= Eo + E/D(rl), Eo = (no, + no2)(1 + 2no3/nm) 

c~,~( - ~ J  + 2g )  = 0 ~ 2E = { J  ---, 2 E M  = j 2  
(A.15) 

Then, taking into account  the last relation (A.15) in the tempera ture  
Ye  = 2 g / ~ [ -  ( j / j { ) 2 ,  the term O - 2  in the numera to r  disappears:  

J e = ( ~ o + J V ' / D ) / ( M o + M / D )  2, Y = 2 ( E o M + E M o - J J o ) = 2 M C  

~ o  = 2EoMo -- Jo  2 = 2(nol + r/02) 2/'/03//1/01 "[- 16nolno2(1 +/"/03//'/01) 2 > O 

2C = 2E o + ( 2 M  0 - 2~Jo 

= no2[( { + 2) 2 + 2no3({ + 1 )2/nol ] + nm(~ -- 2) 2 + 2no3(~ -- 1 )2 > 0 

(a .16)  

To  the Maxwell ians  Mao and Mas we associate, when [t/[--. o% the 
tempera tures  g-eo and Y-e, : 

J-eo = M g, Y e s  = + 

(Yeo - Yes) M o M ~ / ~ o  = M [ m  + 2(1 - 1/#)3 

# = Mo C l i o  > O, m = M / M  o 

(A.17) 

and m has the M sign. For  compressive or rarefactive shocks the mass  
increases or decreases across the shock. Fo r  class III ,  0 < ~ < 1, we study 
the p roper ty  that  bo th  dr and g-e are increasing or decreasing together. 

L e m m a  4. Fo r  class I I I  with compressive shock, mass  and tem- 
pera ture  cannot  bo th  increase across the shock. 

We choose class I I IA  with M > 0  or M o < M ,  and prove  that  
J-Co < J-es is not  possible. Fo r  class III ,  due to no2 < nm and (A.11), we have 
Jo  = Uo Mo > 0 and 

E o -  ~2Mo/2 = (nm + no2)[2 - ~2/2 + (I - -  ~ 2 )  no3/no 1 ] > 0 (A.18) 

J ' e o < Y e  s, M > 0  lead to m > 0 ,  m < 2 ( 1 - # ) / # ,  requiring # <  1 

(# - 1) C = ( E o -  CZMo/2) -  Uo VoMo (A.19) 

F r o m  (A.18) the first term is positive and also the second one because f rom 
(A.8g), Iio < 0 for compressive shock. It  follows that  # < 1 is not  possible. 
Fo r  class I I IB  with M <  0 we use the t ransform ~ .  
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L e m m a  5. For  class III with rarefactive shock, mass and tem- 
perature cannot both decrease across the shock for 42< 4/5. For  class III, 
due to 7 M > 0 ,  if M > 0 ,  then 7 > 0  and M ~ . = l i m , ~ _ ~ d d > M o =  
l i m , ~ d / d ;  while if M < 0 ,  then 7 < 0  and M o = l i m , ~ _ ~ > d g  s= 
l i m , ~  ~ .  Consequently, for rarefactive shocks Vo>0 and the last 
term of (A.19), - J o V o ,  gives a negative contribution. Still assuming 
M > 0 ,  we must have # < 1  and a negative rhs in (A.19). Applying 
(! - 4)/(1 + 4) < no2/no~ < n2 and 

~/2 < (nm - no2)/(nol q- no2) < 4 

1 < 2(nol + no3)/(1 + 2no3) < 2 --* ~/2 < Uo < 24 

2(no3/nm)[nm(1 - 4) - noR( 1 + 4)] + nm(2 -- 4) -- no2(2 -b 4) 

( # -  1) C > n o 3 ( 1 - 4 ) + n o 4 ( l +  4) 

+ no2(2 + 4~ + 342/2) + nm(2 - 44 + 342/2) (a.20) 

Vom o = 

with a negative no1 term for 4 > 2/3. Still using the lower bound for no2/nm, 
we get that p <  1 or Y-eo < ~-~s is not possible for ~2 <4/5,  

( # - l ) C > 2 n o 3 ( 1 - 4 ) + n m ( 4 - 5 4 2 ) / ( l + 4 ) > O  for 42<4/5  (A.21) 

A.8. Overshoot  of  the  T e m p e r a t u r e  

Neglecting J in the temperature, then ~--e--* g e  = 2o~/dd and Q, g e  = 
2JID 2 ( D - 1 ) y ( M E o - E M o )  has a constant sign. Y e  is a monotonic 
4-dependent function. Adding _;//2, then YO can be nonmonotonic. A 
criterion for an overshoot of Y-e is 

3-e(q = O) = (~o + Y / Z ) / ( M o  + M/Z) 2 > sup J-eo, ~--e, (A.22) 

Restricting our study to the solutions M 0 ~ Ms ~ Y--eo <> Y-es, the criterion 
becomes 

Class A M > 0, ~-eo < Yes < Y-e(0) 
(A.23) 

Class B ~-es < Yeo < Ye(0) 

In addition to the sign of J ' e o -  Yes, provided by (A.17), we find 

[~-'e(O) -- J-eo] Mo(Mo + M/2)2/Wo 

= M ( - m / 4  - 1 + l /p)  
(A.24) 

EYe(O) - Ye,] [Mo + M)(Mo + M/2)]2/WoMo 

= M[3m/4 + 1 + (m2/2 -- 1)/#] 
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so that the conditions for the overshoot become 

Class A M > 0, - 3#/4 + �89 [-9kt2/4 - 8(# - 1 )] 1/2 

< m  < 2(1 - # ) / # ,  # < 1  

ClassB M < 0 ,  2 < - m / 1 / ( # - 1 ) < 4 ,  /~>1 

(A.25) 

A.9. Entropies 

We define the shock entropy ~ and the local entropy Y(': 

= ~, ( - ~ + a~) Ni log Ni --* 0.9fl = (N2 N3 - N1 N4) log(N1 N4/N2 N3 ) <~ 0 

= E Ni  log Ni ~ ~ , ~  + 3x Z aiNi  log N i = HI,  7 <~ 0 

is a ~-monotonic decreasing function, ~ l ( t / =  -oo)>~ ~1(~/= oo), while 
is not necessarily monotonic. 

A P P E N D I X  B. ( I  + I ) - D I M E N S I O N A L  S H O C K  W A V E S  

We study the (1 + 1)-dimensional solutions which are sums of two 
similarity waves 

2 

N , = n o ~ + ~ n j j D  s, D j = l + d s e Y ; ' ; ,  r l j = x - ~ s t ,  dj>O (B.1) 
1 

B.1. A lgebra ic  D e t e r m i n a t i o n  

The 16 parameters no~, //ji, "Y j, ~j satisfy 12 relations, leaving 4 
arbitrary parameters. First we have the (A.3a), (A.3b) similarity wave 
relations 

7jnjl(2 -- ~j) = --Tjnj4(1 + ~j) = nj2?j(2 + ~j) =nj37j (~  j -- l) 

= t ' l j 2 / / j 3  - -  F/jl I / j4 = ///01 ~ j4  + ///04/'/]'1 - -  /~/02 F/j3 --/'/03 n j 2  (B.2a) 

/ /04 ~ / /02 / /03 / / /01  

and an additional relation for the sum to be a solution, 

n12n23 + n13n2z = nll  n24 -t- n14n21 (B.2b) 
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We still introduce 4fdependent  intermediate parameters ~j~ = nj,/njl, ~7/nil 
and obtain nil: 

ris2 = (2 - 4j)/(2 + 4s), 

24s = ~7s(2 + {j)(42 - 1), 

nj3 = (2 -- 4 j ) / (4 j  - -  ~), /~j4 = (4j -- 2)/(4S + 1 ) 

nj,(2 - Cs) ~s = n o l n j 4  q- no4 - rto2fiJ3 - no3 fiJ2 

(B.3) 

However, the additional relation n12n23 q-/~13/'122 ~---n24 + /~14 shows that the 
two 4j cannot be arbitrary. We choose the four arbitrary parameters 

41, n 0 i > 0 ,  i = 1 , 2 , 3  (B.4) 

and determine 42 from 41. Putting P =  4142, S =  ~1 + 42 into the additional 
relation, we find two possible solutions for 42: 

S = 0  or 4 1 + 4 2 = 0  and P 2 + 4 - 1 3 P + 2 S 2 = O  (B.5) 

We restrict the study to 42 = - ~ ,  which means that if 41 is in class I 
or III of similarity solutions, then 42 is respectively in class II or IV. Then 
we can construct all nonarbitrary parameters: first nja and then n~o, Ys, 
using (B.3). 

B.2. Positive N; for ~1 + ~ z = 0  

If at t finite the N~ limits Ix] --+ oo are positive, then (~2~ with the dj in 
D s we can have N~> 0 Vx. Depending on whether Y IYZ ~ 0, we have two 
sets of conditions for the limits 

7172<0: So=noi+nj~>O 
(B.6) 

7172>0: noi>0, [2i-=noi+nli+nzi>O 

For the ~1~2 we have the relation 7271 =n21/nllh12 or 

--'~2/')/1 = X - l ( Y - - ~  Z ) / ( X  1 _~ Z )  

X =  (no2 -- noln12)/(nol -- nozni2) 

Z = 3 + 4[-(1 - 42)/(4-- 42)] no3/nm 

(B.7) 

B.2.1. Posit ivity in the Case Yl V2 < 0 

L e m m a  6. If 1 < 41 < 2, n12 < no2/nol < 1~hi2, no3/nol >~q13, then 
S , j > 0  and X > 0 .  Now 41 and 42 = -~1 belong, respectively, to classes I, 
II of Appendix A and from (A.8a) we have, for Si~>0, t721 <no2/nol< 
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~q22 = 1/Jq12, //03//701 > ~q13, and//03///01 >/~24//~22 =/~13. In X written down in 
(B.7), bo th  numera to r  and denomina tor  are positive. 

L e m m a  7. If 1 < r < 2, then ~)1 ~)2 < 0 in both  cases 

1 <no2/n01 < 1/~12 , Z <  - X < 0  or - 1 / X < Z < 0  (B.8a) 

~12<no2/nol<l, Z < - I / X  or - X < Z < 0  (B.8b) 

First, from L e m m a 6 ,  X > 0  in both  cases. Second, from (B.7) and 
/712= (2--~1)/(2-q-r < 1 we see that X-~ 1 if no2<>nol . Third,  from (B.7), 
~1~2 < 0 if Zq~ [-X,  - 1/X]. 

As an applicat ion of Lemmas  and 7, we obtain two classes of N~ > 0 
satisfying both  L',.i > 0 and 7172 < 0; for instance, with (B.8a). 

Theorem 1 a. If 1 < r < 2, 1 < no2/noi < (2 + r  r no3/nm > 
sup{(2 -- r -- r (4- -  r + X)/4(r -- 1)}, X defined in (B.7), then 
N~> 0. 

Another  Theorem lb can be obtained from (B.8b). 

B.2.2. 
of (B.6) 

Posit ivity in the Case Yl Y2 ~> 0. 

g2 2 = ( n o 3 -  12Anm)/4A 

A = ( 4 -  r  1) 

O4 = 3no3 - 32Anol 

Oi//01 = ~"2i+ 1//02, i =  1, 3 

We obtain from the s 

(B.9) 

Lemma 8. f 2 i>0  if 1 < ~ 1 < 2 ,  and no3/no1>12A=3(4-r162 
Recalling that  for 1 < r < 2, depending upon  whether  1 < no2/nol < 

1/~12 or n12<no2/nol < 1, then either X >  1 or 0 < X <  1, and that  ~172>0 
if Z belongs to the interval - X, - 1IX we get the following result. 

Theorem 2. If 1 < r < 2, no3/nol > 3(4 - r 2)/4(r 2 _ 1), and if either 

4(r 
l<no2/nol<l/fi12, ( 3 + X  1)<no3/nol 4 _ r  

o r  

4 ( ~ 2 -  1) 
/~12 < noz/nol < 1, (3 + X )  < no3/nol 

4 - - r  2 

then we have both  s 0, 7172>0  and N i > 0 .  

< 3 + X  -1 
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